

Scaling the Clean Cooling Economy

www.atmosphere.cool

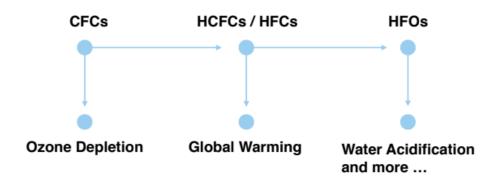
Global Policy and Market Trends: Accelerating Natural Refrigerant based technologies

Jan Dusek
COO & Head of APAC, ATMOsphere

Who we are

Scaling the Clean Cooling & Heating Economy

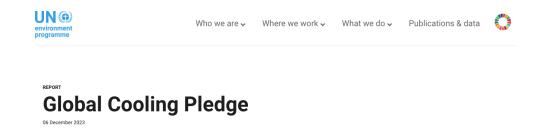
ATMOsphere is a global market accelerator with a mission to clean up cooling and heating.



https://atmosphere.cool/

What do we stand against and for

Dirty Cooling Paradigm


sphere Impact of Refrigerants Fact Sheet #2 (V.1.) Refrigerants: Real GWP and PFAS							
Refrigerants / -			IPCC AR4 (2007) GWP 100 Real GWP		GWP 100 Real GWP		PFAS
Brand Name	Type	Composition	years	20 years	years	20 years	Yes/Ne
R143a	HFC	100% R143a	4470		5810	7840	Yes
R125	HFC	100% R125	3500		374D	6740	Yes
R134a	HFC	100% R134a	1430		153D	4140	Yes
R32	HFC	100% R32	650		771	2690	No
R404A Freon 404A	HFC	44% R125 / 4% R134a / 52% R143a	3922		4728	7208	Yes
R407A Freon 407A	HFC	20% R32, 40% R125, 40% R134a	2102		2262	4890	Yes
R410A Freon 410A	HFC	50% R125 / 50% R32	2075	4340	2255	4715	Yes
R407C Freon 407C	HFC	23% R32 / 25% R125 / 52% R134a	1768	4115	1908	4457	Yes
R452A Opteon XP44	HFC/ HFO	11% R32 / 59% R125 / 30% R1234yf	2137		2292	4273	Yes
R449A Opteon XP40	HFC/ HFO	24.3% R32 / 24.7% R125 / 25.7% R134a / 25.3% R1234yf	1390	3119	1504	3383	Yes
R448A Solstice N40	HFC/ HFO	26% R32 / 26% R125 / 21% R134a / 7% R1234ze / 20% R1234yf	1379		1494	3321	Yes
R449C Opteon XP20	HFC/ HFO	20% R32 / 20% R125 / 29% R134a / 31% R1234yf	1245	1245 2847 1346		3087	Yes
R452B Opteon XL55	HFC/ HFO	67% R32 / 7% R125 / 26% R1234yf	681	2006 779		2275	Yes
R454B Opteon XL41	HFC/ HFO	68.9% R32 / 31.1% R1234yf	448		531	1854	Yes
R513A Opteon XP10	HFC/ HFO	44% R134a / 56% R1234yf	629	1686	673	1823	Yes
R450A Solstice N13	HFC/ HFO	42% R134a / 58% R1234ze	601		643	1742	Yes
R454C Opteon XL20	HFC/ HFO	78.5% R1234yf / 21.5% R32	140	502 166		580	Yes
R455A Solstice L40X	HFC/ HFO	75.5% R1234yf / 21.5% R32 / 3% R744	140	502	166	580	Yes
R744	Natural	CO2	1	1	1	1	No
R600a	Natural	Isobutane	<1	<1	<1	<1	No
R290	Natural	Propane	<1	<1	<1	<1	No
R1270	Natural	Propylene	<1	<1	<1	<1	No
R717	Natural	NH*	o	D	a	0	No
R718	Natural	њо	o o	D	a	0	No

Global

Cooling Pledge

GLOBAL COOLING PLEDGE FOR COP28

- Voluntary measure adopted by 60+ Parties to the UNFCCC to mainstream cooling-related polices at COPs
- Reducing at least by 68% cooling related emissions by 2050
- Move towards environmentallyfriendly low-GWP refrigerants
- ATMOsphere amongst the first non-state actors signatories

Source: https://www.unep.org/resources/report/global-cooling-pledge

Kigali Ratification

- 156 out of 197 Parties to the UN
- Different deadlines among Article 5 and non Article 5 Parties on production and consuption.
- Measures on HFCs can be varied, however, spanning from closer attention to lifecycle management to straightforward bans

PFAS amendment after Kigali?

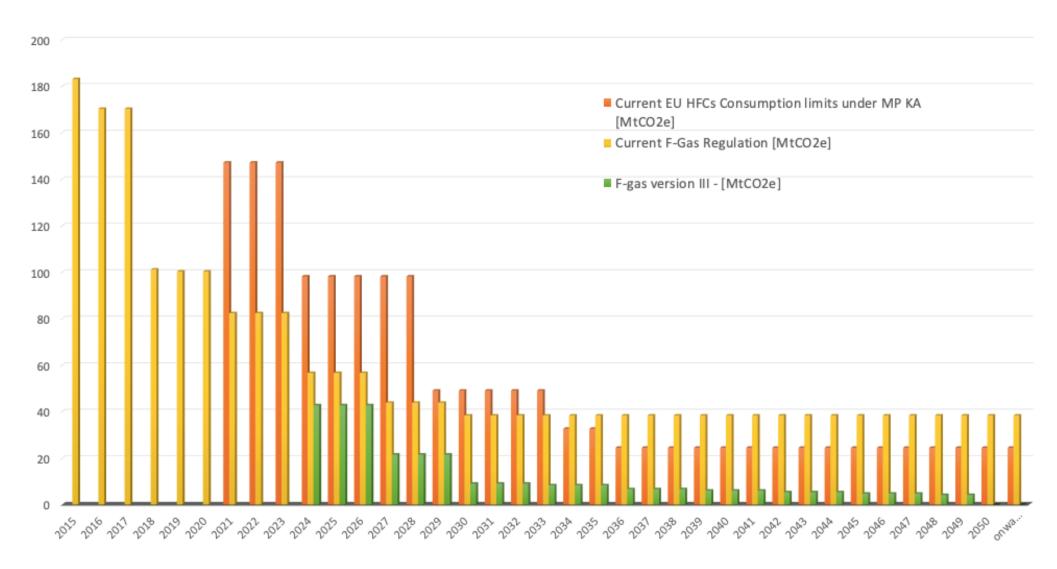
• EU & other countries pushed for PFAS review by the Montreal Protocol Scientific Panels, EEAP (Environmental Effects Assessment Panel, Scientific Assessment Panel, Technology and Economic Assessment Panel) (Decision at MOP 35 in Nairobi, Kenya)

Will there be an amendment tackling PFAS that are F-gases in the near future?

Source: https://ozone.unep.org/system/files/documents/MOP-35-12E.pdf

Europe - Policy

EU F-gas V.3


- F-gases contributed to 2.8% of total GHG emissions in Europe in 2022 (European Commission, 2023)
- Legal tool used in Europe to transpose the requirements of the Kigali Amendment
- Published in the Official Journal on 20.02, enforceable as of 11.03
- More ambitious than current F-gas Regulation (adopted in 2014)
- Mandatory training and certification for natural refrigerants
- PFAS considered in legal text (Precautionary Principle)
- Mobile systems in the spotlight with report due by 2027

Source: https://eur-lex.europa.eu/eli/reg/2024/573/oj

First in the world phase out of HFC consumption

EU F-gas v.3 -> New placing on the market provisions (bans) - Refrigeration

Application	GWP	Date
Domestic refrigerators and freezers	f-gases (HFCs and HFOs)	1 January 2026
Refrigerators and freezers for commercial use (self- contained equipment)	f-gases above 150 GWP	1 January 2025
Any self-contained refrigeration equipment	f-gases above 150 GWP	1 January 2025
Refrigeration equipment	- f-gases above 2500 GWP	- 1 January 2025
	- f-gases above 150 GWP	- 1 January 2030
Servicing or maintenance on any refrigeration equipment	f-gases above 2500 GWP	1 Janaury 2025
Servicing or maintenance of stationary refrigeration equipment	- HFC in Annex I above 750 GWP	1 January 2032

Safety standards provisions and exclusions for particular applications are included in the Regulation. For a more complete overview check Annex IV of the legal text: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202400573

EU F-gas v.3 -> new placing on the market provisions (bans) - Chillers

Application	GWP	Date
Chillers (capacity up to 12 kW)	f-gases above 150 GWP	1 January 2027
Chillers (capacity up to 12 kW)	f-gases	1 January 2032
Chillers (capacity above 12 kW)	f-gases above 750 GWP	1 January 2027

Safety standards provisions and exclusions for particular applications are included in the Regulation. For a more complete overview check Annex IV of the legal text: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202400573

EU F-gas v.3 -> new placing on the market provisions (bans) - Split ACs and Heat Pumps

Application	GWP	Date
Split air-to-water systems of a rated capacity up to and including 12 kW	f-gases above 150 GWP	1 January 2027
Split air-to-air systems of a rated capacity up to and including 12 kW	f-gases above 150 GWP	1 January 2029
Split systems of a rated capacity up to and including 12 kW	f-gases	1 January 2035
Split systems of a rated capacity of more than 12 kW	f-gases above 750 GWP	1 January 2029
Split systems of a rated capacity of more than 12 kW	f-gases above 150 GWP	1 January 2033

Safety standards provisions and exclusions for particular applications are included in the Regulation. For a more complete overview check Annex IV of the legal text: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L 202400573

EU F-gas v.3 -> new placing on the market provisions (bans) - Heat Pumps

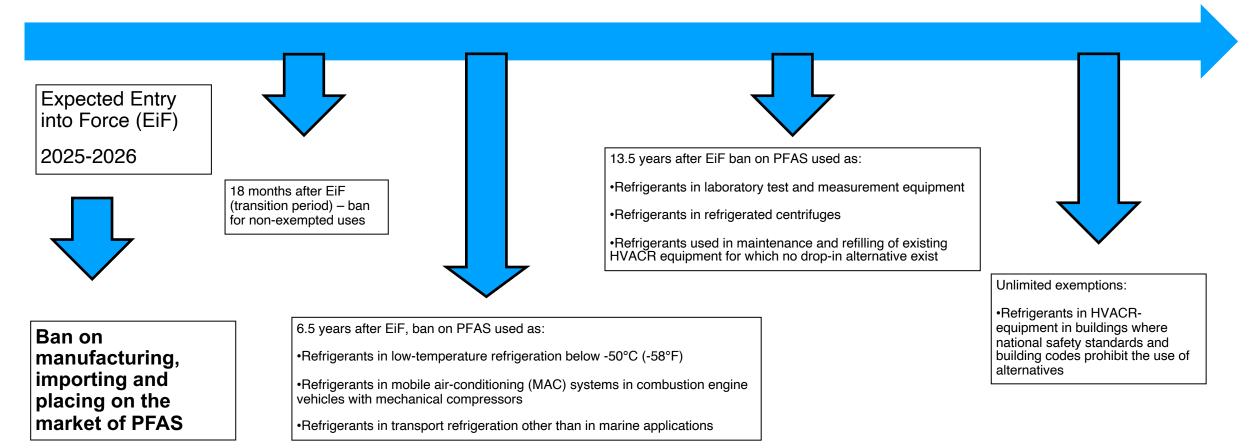
Application	GWP	Date
Plug-in room, monoblock air- conditioning and other self- contained heat pump equipment, up to and including 12 kW	f-gases above 150 GWP	1 January 2027
Plug-in room, monoblock air- conditioning and other self- contained heat pump equipment, up to and including 12 kW	f-gases	1 January 2032
Monoblock and other self-contained air-conditioning and heat pump equipment, with a maximum rated capacity of larger than 12kW but not exceeding 50 kW	f-gases above 150 GWP	1 January 2027
Other self-contained air-conditioning and heat pump equipment	f-gases above 150 GWP	1 January 2030

Safety standards provisions and exclusions for particular applications are included in the Regulation. For a more complete overview check Annex IV of the legal text: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202400573

EU Universal PFAS Restriction

- Blanket ban proposed on fluorinated refrigerants that are per and polyfluoroalkyl substances (PFAS)
- Broad family of chemicals sharing persistence as a problem
- Derogations introduced where alternatives are not considered mature
- The proposal defines PFAS as "substances that contains at least one fully fluorinated methyl (CF3-) or methylene (-CF2-) carbon atom (without any H/Cl/Br/l attached to it)."
- Some fluorinated gases controlled by the Kigali Amendment as well as their low GWP halogenated replacements fall in the scope of the ban

Source: https://echa.europa.eu/es/registry-of-restriction-intentions/-/dislist/details/0b0236e18663449b



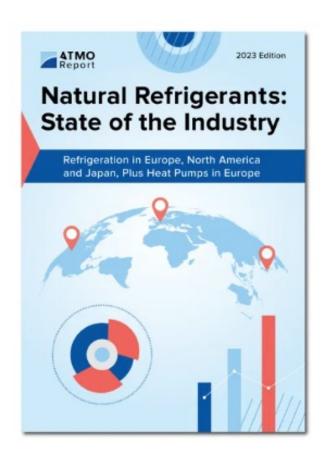
 Some of the substances in scope

Preferred IUPAC name (PIN)	Brand name	F-name	Chemical structure	Molar TFA yield
Pentafluoroethane	Genetron HFC 125, Khladon 125, Suva 125, Freon 125	HFC-125	CF3-CHF2	Not analysed
1,1,1,2- Tetrafluoroethane	Freon 134a Dymel 134a Forane 134a Genetron 134a	HFC-134a	CF3-C H2F	7-20%
1,1,1-Trifluoroethane	Fluorocarbon FC143a	HFC-143a	CF3-C H3	Up to 10%
1,1,1,3,3- Pentafluoropropane	Enovate 3000; Genetron 245fa	HFC-245fa	CF3-CH2-CHF2	Up to 10%
1-Chloro-3,3,3- trifluoro-1-propene	Solstice® zd	HFO-1233zd(E)	CHCI=CH-CF3	2%
2,3,3,3- Tetrafluoropropene	Opteon™ YF	HFO-1234yf	CH2=CF-CF3	100%
Trans-1,3,3,3- tetrafluoroprop-1-ene	Solstice® ze	HFO-1234ze(E)	CHF=CH-CF3	Up to 10%
Trans-1,1,1,4,4,4- hexafluorobut-2-ene	Opteon™ SF33	HFO-1336mzz(E)	CF3-CH=CH-CF3	Up to 20%
(Z)-1-Chloro-2,3,3,3- tetrafluoropropene	AMOLEA™ 1224yd	HCFO-1224yd	CHCI=CF-CF3	100% (estimated)
Trans-1-chloro-3,3,3- trifluoropropene	Solstice® zd	HCFO-1233zd(E)	CHCI=CH-CF3	2%

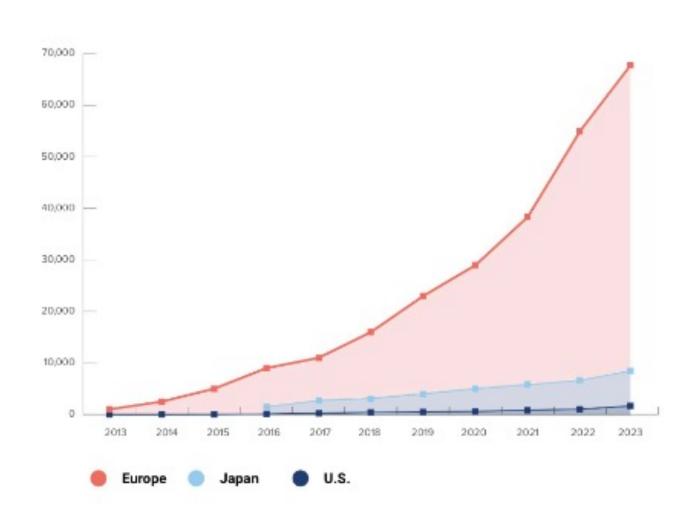
EU PFAS – Measures on PFAS in HVAC as refrigerants

Other measures:

•Reporting obligation for manufacturers and importers for PFAS used in exemptions -> yearly reports on identity and quantity of the substances placed on the market the previous year



Market Trends


Market Trends: Europe, North America, Japan

Transcritical CO2 Installations sphere Growth in Major Regions

Europe - Transcritical CO2 in Commercial Refrigeration: State of Play

Figure 7: Transcritical CO₂ Installations in Europe

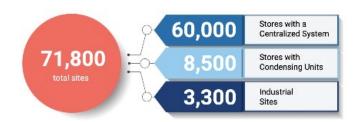
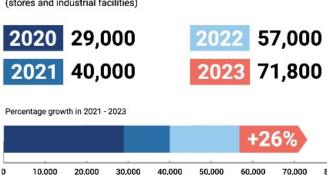


Figure 8: Transcritical CO₂ **Commercial Refrigeration** Market Penetration in Europe


298,600 total stores

CO₂ stores

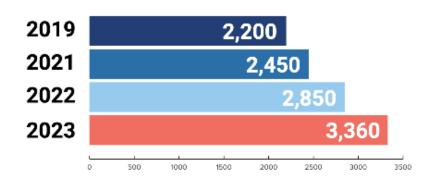
Figure 9: Transcritical CO₂ Installation Growth in Europe

(stores and industrial facilities)

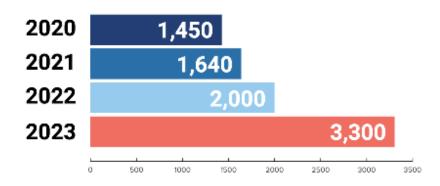
Europe – Hydrocarbons-based systems: State of Play

Figure 11: Self-Contained Hydrocarbon Cabinets Installed in Europe

Figure 12: Self-Contained Hydrocarbon Cabinets, Historical Installation Growth in Europe



Europe – Ammonia and CO2sphere **Industrial Sites: State of Play**


Figure 14: Growth of Low-Charge Ammonia in Europe

(industrial sites)

Figure 13: Growth of Transcritical CO₂ Installations in Europe

(industrial sites)

US - Transcritical CO2: State of Play

Figure 18: Transcritical CO₂
Installations in North America

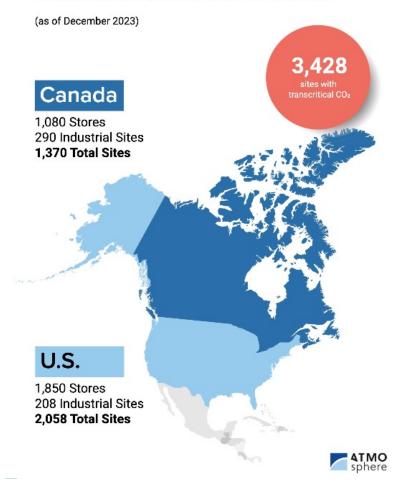


Figure 19: Transcritical CO₂
Commercial Refrigeration Market
Penetration in North America

231,443 total stores*

1.27% transcritical CO₂ stores

4.09% transcritical CO₂ stores

*IBISWorld and NACS

US - Transcritical CO2: Growth Reported

Figure 20: Transcritical CO₂
Installation Growth in North America

(stores)

2020 945

2022 1,605

2023 2,930

U.S.

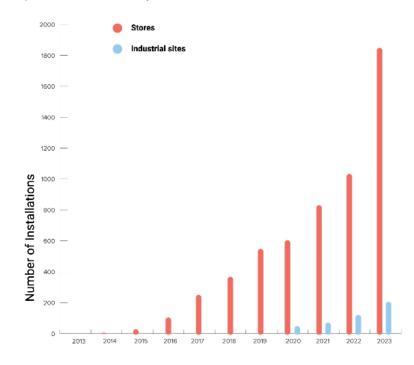
Canada

2020 605

2020 340

2022 1,030

2022 575


2023 1,850

2023 1,080

Figure 21: Transcritical CO₂ Installation Growth in U.S.

(stores and industrial sites)

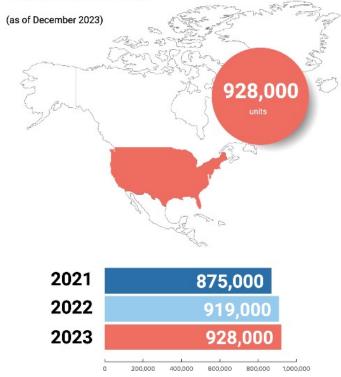
4TMOSphere **Reported in Industrial Sites Reported in Industrial Sites**

Figure 23: Growth of Transcritical CO2 in North America

(industrial sites)

290

U.S. Canada


2022 170

US – Hydrocarbons-based systems: State of Play

Figure 22: Self-Contained Hydrocarbon Commercial Cabinets Installed in U.S.

US – Ammonia in Industrial Sites: State of Play

Figure 25: Growth of Low-Charge Ammonia in U.S.

(industrial sites)

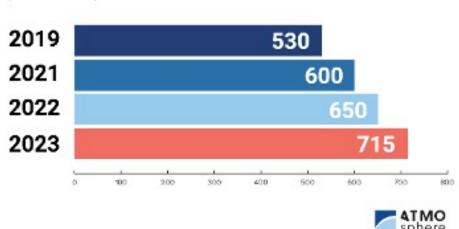
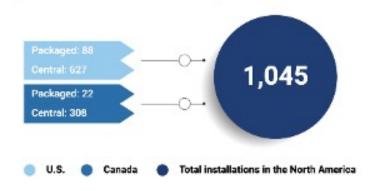




Figure 24: Installations of Low-Charge Ammonia Systems in North America

(industrial sites as of December 2023)

Japan - Transcritical CO2: State of Play

Japan - Transcritical CO2: Growth Reported

Figure 28: Transcritical CO₂ Commercial Refrigeration Market Penetration in Japan

77,026 food retail stores

10.9% transcritical CO2 stores (all)

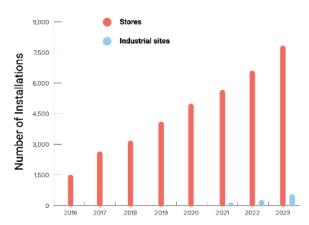
55,790 convenience stores*

14.0% transcritical CO2 convenience stores

21,236 supermarkets**

2.8% transcritical CO₂ supermarkets

Figure 29: Transcritical CO₂ Installation Growth in Japan


(stores)

2021 5,800 **2023** 8,385

2022 6,630

Figure 30: Transcritical CO₂ Historical Installation Growth in Japan

(stores and industrial sites)

Note: Prior to 2020, most installations were at stores.

^{*}Japan Franchise Association
**Japan Supermarket Statistics Survey Office

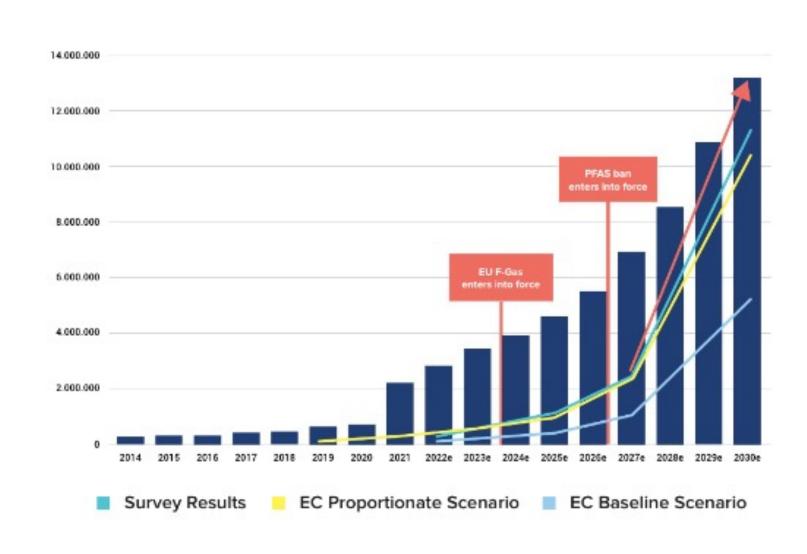
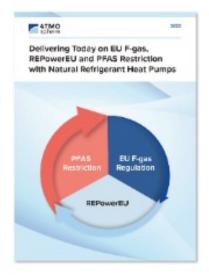

Europe – Hydrocarbons-based Chillers: State of Play

Figure 15: Hydrocarbon Chiller Installations in Europe



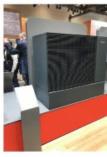
Europe - Domestic Heat Pumps - ATW

Delivering Today on EUF-gas, **REPowerEU and PFAS Restriction with** Natural Refrigerant Heat Pumps – FREE

Read More »

And many more at: atmosphere.cool/heat-pumps-report-2023/

ACOND - CZECHIA acond.cz


argoclima.com

AIT/NOVELAN - GERMANY novelan.com/de alpha-innotec.com/de

BOSCH bosch.com

BRÖTJE - GERMANY broetje.de

buderus.de/de

COSMOGAS - ITALY www.cosmogas.com/en-uk

CTC - SWEDEN ctc-heating.com

DAIKIN www.daikin.com

MCE 24 All about R290 Heatpumps

Marc Chasserot · You

Founder & CEO @ ATMOsphere #CleanCooling #CleanHeating with #NaturalRefrigerants. Helping HVAC&R companies worldwide to clean u... 1w - Edited • ©

Will #mce2024 go down in the history books as the 'Propane takeover of commercial heatpumps' ?

I spent two days in #milan with Sabrina Munao and talked with a lot of people. I started in the morning of day 1 taking pictures of every single new #R290 Heatpump i could see. I basically got overwhelmed very quickly and stopped. It was nuts. Literally EVERYBODY had at least one R290 heatpump on display at their booth.

Insight 1) this mega switch happened because of the #EUFGas bans coming. Two years ago it was only talk and all the traditional players were saying 'we're not ready' 'we need more time' 'jobs will be destroyed if we move too fast' etc

Insight 2) is this for 'real or for show'? Real means that the incumbents will proactively sell these solutions to their customers over high gwp R32 and pfas blend R454B alternatives. My suspicion is NO. They just want to have it in their portfolio to not be caught out by the competition. And will still push the **#synthetics** until the last day before they are banned. Unless an **#enduser** insists on R290 of course.

Insight 3) the propane innovators / the ones that did not wait for #MCE24 to #gonatrefs are happy. Because they know that they are ahead and will push for more and more innovations to optimize R290 whilst the others have divided loyalties.

Insight 4) so where does this leave #R744 heatpumps. I counted 2 players. There are more. We talk to them. But it's a pretty safe bet to assume that #heatpumps will be 80% Propane / 20% R744 going forward just like we have 80% CO2 in #refrigeration / 20% Propane today.

End users will have choice at different price points to meet their needs.

#naturalrefrigerants will take over heatpumps just like they did in refrigeration in Europe.

See you at #Chillventa2024 :-)

ATMOsphere #cleancooling Michael Hines Jan Dusek

©♥ Jan Dusek and 104 others

6 comments · 4 repos

Thank you for listening.